Производители греющего кабеля
Греющий кабель для тёплого пола производят множество компаний. Популярными являются Lavita, Nelson, Nexans, Handy heat, Oj electronics, Uriel electronics, Ace floor, Suninus, Solar ville, Young chang silicone.
Lavita – производится продукция на территории Южной Кореи. На российском рынке марка присутствует 10 лет, цена на кабели не высокая, так как сюда делаются большие поставки. При этом качество очень высокое. Продукция выполняется по технологии линейного экструдирования (по которой выполняются дорогие бренды Raychem, Elterm). Лавита – это широкий модельный ряд, включающий множество типов кабелей.
Схема установки греющего кабеля Lavita UHC-20
Nelson – компания, которая входит в крупный концерн Emerson и производит электрообогревательные системы на основе гибких кабелей. Срок службы продукции — более 20 лет.
Nexans – компания со штаб-квартирой в Париже. Её крупные заводы находятся в Норвегии, Германии, Швейцарии, Бельгии. В Россию поставляет различные нагревательные кабели, рассчитанные на применение во всех теплотехнических областях. Вся продукция компании Nexans подвергается контролю качества и выполняется в соответствии со стандартами ISO 14001, ISO 9001, EMAS и другими. Кабель имеет максимальную герметичность, уникальные характеристики, ему не страшен перегрев.
Handy heat – компания, которая производит кабели для тёплого пола, а также всё, что с ними связано: термостаты, системы обогрева пола и пр. Существует с 2002 года. Штаб-квартира находится в Дании.
Oj electronics – кредо компании звучит как «ответственность и надёжность». Эти слова являются основополагающими в её работе с 1964 года. Компания расположена в Дании и имеет представительства в американских странах, странах Азии и Европы. Продукция Oj electronics имеет множество преимуществ, среди которых стойкость к механическим влияниям и атмосферным, возможность проводного управления и беспроводного и пр.
Suninus – компания, продукция которой реализуется в Германию, Норвегию, Францию, Италию и другие страны. Кабель для тёплого пола характеризуется универсальностью, высокой удельной мощностью, хорошим коэффициентом мощности, безопасностью и пр.
Young chang silicone существует на рынке с 1986 года. Выпускает экологичные и безопасные отопительные системы.
Таким образом, кабельный тёплый пол способен создать комфортные условия в помещении. Главное — ответственно подойти ко всем этапам его расчёта, выбора и монтажа.
Монтаж электрического теплого пола с саморегулирующимся проводом
Монтаж любого тёплого пола следует начинать с приобретения необходимо материал, в соответствии с произведёнными расчётами.
Процесс обустройства нагревательной конструкции с саморегулирующимся кабелем схож с монтажом любого электрического полового отопления:
Устанавливается термостат — определяется место его размещения на стене, расстояние от пола не меньше 30 см, желательно недалеко от выключателя. В стене делается углубление, куда и монтируется терморегулятор. От него пробивается штроба до пола, в которой размещается гофрошланг.
Подготавливается основание — его нужно выровнять и очистить от мусора. Если пол имеет большие перепады, то лучше его залить тонким слоем черновой стяжки.
Производятся работы по гидро и теплоизоляции — укладывается два слоя материала. Сначала гидроизоляционный — это может быть полиэтиленовая плёнка, поверх — термостойкая теплоизоляция, лучше с металлизированной поверхностью. Перед их монтажом, периметр помещения проклеивается демпферной лентой, для компенсации тепловых расширений стяжки при нагревании.
Стелется саморегулирующийся кабель — укладывается согласно запланированной схеме («змейка» или «улитка»). Он должен быть целостным, начинать следует от термостата. Важный момент — шаг укладки нагревательного элемента. Чем он меньше, тем быстрее происходит нагрев пола. А большие шаги приведут к холодным зонам. Рекомендованный отступ от стен 15 см.
Фиксация кабеля производится к армирующей сетке, которая уложена на теплоизоляцию, или с помощью специальной клеящейся ленты к подложке.
Монтируется термодатчик пола — электрошнур от него следует подвести к терморегулятору через гофрированную трубу. Устанавливается термодатчик по центру комнаты, между двумя проводами.
Заливается финишная стяжка — слой бетона должен быть не менее 6 см. Заливка пола делается в один подход, и после выравнивания раствора, бетонная поверхность оставляется на 4 недели для полного затвердевания.
Подключается нагревательный элемент к термостату — это делается при помощи специальных зажимов.
Укладывается финишное покрытие — любой материал (плитка, ламинат), который может соседствовать с отоплением.
Использование в тёплых полах саморегулирующего кабеля выгодно и удобно. Ведь в такой конструкции нет риска перегрева нагревательного элемента, это делает её безопасней. А способность самостоятельно регулировать температурный уровень, позволяет без труда создать комфортную атмосферу в доме.
Резистивный кабель
При выборе резистивного провода специалисты указывают на существенный недостаток — его свойство выделять одно и то же количество тепла, не связанное с температурой теплоносителя.
По этой же причине нельзя монтировать резистивный кабель в местах, где будет стоять мебель.
- Равномерность выделения одинакового объема тепла может привести к перегреву таких участков, соответственно к порче имущества и неисправностям в системе отопления.
- К преимуществам данного оборудования относят низкую цену.
- Принцип работы одножильного и двужильного кабеля одинаковый. Для функционирования одножильного кабеля дополнительно устанавливают терморегулятор и термодатчик.
- С целью образования замкнутого контура при запуске нагревательной системы подключают к электрической сети оба конца провода.
При выборе двужильного провода замыкание цепи обеспечивают за счет присоединения специального оборудования – муфты — к свободному концу кабеля.
Монтаж стержневого пола
Как сделать теплый пол под плитку? Все просто .Монтаж своими руками!
Смотрите это видео на YouTube
Технология укладки стержневого тёплого пола схода с укладкой кабельных мат. Сначала делается планировка размещения полотна, и рассчитывается количество требуемого материала.
Стержневые полы продаются в комплекте, но иногда необходимо покупка дополнительных компонентов. Требуемая мощность вычисляется по аналогии с кабельными матами, которые мы рассматривали выше.
Укладка стрежневого пола состоит из нескольких этапов:
Подготовительные работы — определение места для термодатчика, очистка и выравнивание основы, размещение фольгированной подложки — эти работы выполняются также, как и при обустройстве любого электрического пола. Если пол планируется в стяжку, то периметр оклеивается демпферной лентой.
Монтаж стержней — стержневой рулон раскручивается на поверхности, расстояние между соседними полосами должно быть 50 — 70 мм. Длина одной полосы не должна превышать 25 м. Мыты к подложке фиксируются скотчем.
Подключение — на подготовленное место устанавливается термостат, к которому подключаются провода пола. Датчик, помещённый в гофру, размещается в штробу подложки и подсоединяется к регулятору, который в свою очередь подключается к источнику питания.Обязательное условие — проводить тестовое испытание системы, перед следующим этапом работ.
Заливка стяжки — это может быть бетонный раствор, сухие клеевые смеси, или сухая стяжка, толщина слоя 20 — 30 см.
Монтаж финишного покрытия — только после полного высыхания стяжки кладётся отделочный материал. При укладке плитки заливка стяжки не требуется, маты заливаются плиточным клеем.
Укладывать стержневой тёплый пол допустимо на старое покрытие. Принцип монтажа такой же, как при укладке термомат.
Кабельный теплый пол под плитку
В последние годы системы нагрева полов с помощью кабеля пользуются большой популярностью, что не удивительно. У них имеются значительные преимущества по сравнению с другими нагревательными элементами.
- При выборе теплого пола под плитку чаще всего рекомендуют использовать именно саморегулирующий экранированный кабель в виде греющего провода или нагревательных матов, состоящих из кабельных секций на специальной сетке. Кабельный теплый пол под плитку – наиболее популярная и эффективная система нагрева полов.
- Среди множества разнообразия обогревающего оборудования сложно выделить лидера из кабельных теплых полов. В современном мире огромное количество производителей рекламируют свою продукцию как самую надежную и высокоэффективную.
Среди отечественных фирм особым спросом пользуются нагревательные кабели от «Теплолюкс». Они по праву могут называться лучшими кабельными теплыми полами в нашей стране.
Кабельный пол
В конструкции кабельного электрического пола главным элементом выступает провод, в нём эл. энергия трансформируется в тепловую.
Устройство кабельного пола и нагревательного элемента
Кабельное отопление включает в себя: нагревательный кабель, соединительные муфты, регулировочные и контролирующие приспособления.
Основная часть — греющий кабель, он имеет несколько изоляционных слоёв. В его составе: токоведущие жилы, стекловолокнистое армирование, полиэфирная плёнка, медный проводник, алюминиевый экран и защитный слой ПВХ.
Кабель для тёплых электрических полов бывает резистивный и саморегулирующий. К резистивным относятся:
- Одножильный — стоит не дорого, но высокий уровень электромагнитного излучения делает установку недопустимой в жилых комнатах.
- Двужильный — в нём одна нагревательная жила выполняет функцию обычного провода, вторая — нагревательного. Это свойство увеличивает стоимость, но зато снижает ЭМИ.
Саморегулирующий кабель — он может менять уровень нагрева в зависимости от температуры в помещении. Устройство провода — две замкнутые параллельные токовыводящие жилы с полупроводниковой матрицей.
Эти полупроводники отвечают за регулировку и контролируют уровень нагрева. Свойство такого вида кабеля приводит к экономии электричества, но это не отражается на равномерности прогрева поверхности.
Принцип работы
Внешне греющий кабель напоминает обычный провод, передающий электрическую энергию, но все не так просто. В его жилах происходит преобразование электроэнергии в тепловую.
Плюсы и минусы
ПЛЮСЫ и МИНУСЫ КАБЕЛЯ и МАТА для ТЕПЛОГО ПОЛА.
Watch this video on YouTube
Эта модель электрического пола наиболее сложная с точки зрения монтажа. Ведь требуется уложить и закрепить кабель, залить его бетонной стяжкой — это трудоёмкий процесс (замес раствора, заливка по поверхности и выравнивание правилом).
Такая конструкция уменьшает высоту потолка, утяжеляет сооружение, что делает его непригодным для укладки в домах со слабыми перекрытиями или в многоэтажках. Ещё один минус — нельзя размещать под тяжёлой мебелью и сантехникой.
Однако следует сказать, что у кабельного тёплого электрического пола есть своим плюсы. Их можно стелить в комнатах с нестандартной планировкой, и укладывать для обогрева элементов снаружи дома — крыши или стоков. А также нет риска протечек.
Инструкция
Зная общие теплопотери ограждающими конструкциями помещения, вначале следует отнять от этого значения величину потерь через полы, поскольку при устройстве теплого пола их не будет. Полученную величину Q (Вт) надо разделить на площадь комнаты F (м2) для того, чтобы узнать удельную теплоотдачу, которую должна обеспечивать система водяного пола q (Вт/м2):
q=Q/F.
Рисунок 2. Номограмма определения удельной теплоотдачи теплого пола с ковровым покрытием или паркетом.
Дальше расчет выполняется графическим способом по номограммам, представленным на рис. 1, 2, 3. Следует выбрать ту номограмму, которая соответствует вашему напольному покрытию. Взяв получившееся значение q, откладываемое с левой стороны графика, нужно определить температуру поверхности пола, которая обеспечит необходимое поступление тепла в помещение. Например, если удельная теплоотдача должна составлять 99 Вт/м2, а покрытие синтетическое (линолеум), то по номограмме на рис. 1 необходимая температура поверхности – +29⁰С, что неприемлемо.
Тогда по той же номограмме принимается максимально допустимая температура – +26⁰С. Если от этого значения (располагается на правой шкале графика) вести горизонтальную линию, то она пересечет несколько диагональных графиков, отражающих интервал укладки труб теплого пола. Подбирается оптимальное значение, в данном примере подойдет 0,2 м. От места пересечения горизонтальной линии температуры и диагонального графика интервала укладки проводится вертикальная линия вниз. Она укажет на величину средней разности температур, в приведенном примере она составит 21⁰С. Дойдя по горизонтальной линии до самого конца, можно выяснить реальную удельную теплоотдачу контура отопления, здесь получится 68 Вт/м2.
Теперь можно рассчитать параметры теплоносителя для системы. Определяется его средняя расчетная температура:
tт=∆tср+tпом.
В этой формуле:
Рисунок 3. Номограмма определения удельной теплоотдачи теплого пола с толстым ковровым покрытием или толстым паркетом.
- tт – средняя расчетная температура воды в системе, ⁰С;
- ∆tср – средняя разница температур, определенная ранее по номограмме, ⁰С;
- tпом – необходимая температура воздуха в помещении, ⁰С.
Если подставить те же цифры из рассматриваемого примера и принять значение температуры в комнате равным 20⁰С, результат будет – +41⁰С. Ранее были указаны стандартные температурные графики, которые следует принимать для теплого пола, под результат примера методом подбора определен график 45/35⁰С.
Поскольку температура поверхности была принята меньше требуемой для отопления комнаты, нужно вычислить, какова разница между потоком, который будет поступать от теплого пола, и необходимым изначально количеством теплоты для компенсации потерь через наружные ограждения. Для этого нужно площадь помещения умножить на удельную теплоотдачу от контура напольного отопления:
Qп=F×qп.
Если для примера принять значение площади равным 40 м2, то величина теплового потока будет:
68 Вт/м2х40 м2=2720 Вт.
Изначальная же расчетная величина q составляла 99 Вт/м2, а общая – 3960 Вт, разница – 1240 Вт. Это недостающее количество теплоты надо подать в комнату другим, традиционным способом отопления, то есть радиаторами.
Определив расчетный температурный график подачи теплоносителя (в примере – 45/35⁰С), интервал укладки трубопроводов отопительного контура (в примере принят 0,2 м), надо рассчитать протяженность трубы:
Схема подключения теплого пола.
L=F/a, где:
- L – длина трубы, м;
- а – интервал ее укладки, м;
- F – площадь поверхности теплого пола, м2.
В примере: 40 м2/0,2 м=200 м. К этой протяженности необходимо прибавить длину труб, которые идут до помещения от распределителя, здесь для примера пусть будет 10 м. Получилось 210 м, что является слишком большим контуром, который будет иметь очень высокое гидравлическое сопротивление. Нужно разделить систему на 2 контура, тогда длина трубы составит 105 м, это максимально допустимое значение. Другой вариант – пересмотреть интервал укладки, увеличить его, тогда материала трубы понадобится меньше, но и отдача теплого пола станет ниже. В результате придется наращивать мощность радиаторов.
Виды греющих кабелей для водопровода
Есть два вида нагревательных кабелей — резистивные и саморегулирующие. В резистивных использовано свойство металлов при прохождении электрического тока нагреваться. В обогревающих кабелях этого типа греется металлический проводник. Их характерная черта — они выделяют всегда одинаковое количество тепла
Неважно на улице +3°C или -20°C греться они будут одинаково — на всю мощность, следовательно, потреблять будут одинаковое количество электроэнергии. Чтобы уменьшить расходы в относительно теплое время, в системе ставят датчики температуры и терморегулятор (такие же, как используют для электрического теплого пола)
Строение резистивного кабеля
Резистивные обогревательные провода при укладке не должны пересекаться или располагаться один возле другого (вплотную). В таком случае они перегреваются и быстро выходят из строя. Внимательно следите за этим моментом в процессе монтажа.
Стоит еще сказать, что резистивный греющий кабель для водопровода (и не только) бывает одножильным и двухжильным. Чаще используются двухжильные, хоть они и дороже. Разница в подключении: у одножильных должны к электросети подключаться оба конца, что не всегда удобно. Двухжильные на одном конце имеют заглушку, на втором — закрепленный обычный электрический шнур с вилкой, который включается в сеть 220 В. Что еще надо знать? Резистивные проводники нельзя резать — работать не будут. Если купили бухту с более длинным чем надо отрезком — уложите его целиком.
Примерно в таком виде продают нагревательные кабели для водопровода
Саморегулирующиеся кабели — это металлополимерная матрица. В данной системе провода только проводят ток, а греется полимер, который находится между двух проводников. Этот полимер имеет интересное свойство — чем выше его температура, тем меньше тепла он выделяет, и наоборот, остывая, он начинает выделять больше тепла. Происходят эти изменения независимо от состояния соседних участков кабеля. Вот и получается, что он сам регулирует свою температуру, потому его так и назвали — саморегулирующийся.
Строение саморегулирующего кабеля
У саморегулирующихся (самогреющих) кабелей сплошные плюсы:
- они могут пересекаться и не перегорят;
- их можно резать (есть маркировка с линиями реза), но требуется затем сделать оконечную муфту.
Минус у них один — высокая цена, но срок службы (при соблюдении правил эксплуатации) порядка 10 лет. Так что траты эти разумны.
Используя греющий кабель для водопровода любого типа, трубопровод желательно утеплить. Иначе на обогрев потребуется слишком большая мощность, а значит, и большие расходы, да и не факт, что подогрев справится с особо сильными морозами.
Расчет мощности
Сначала необходимо определить будет ли одножильный или двужильный теплый пол служить в качестве основной или вспомогательной системы обогрева, так как именно этим и определяется в первую очередь их выбор. Покажем на примере, как рассчитать тепловые потери в комнате и наиболее соответствующую условиям мощность нагревающих элементов.
Допустим, что для обычной квартиры из двух комнат общий расход тепла с учетом соответствующих коэффициентов сопротивления теплопередачи поверхностей равен 6 кВт.
На заметку
Если расчет проводят для вспомогательной системы учитывается также и мощность и основной.
В среднем для обогрева 10 кв. м жилого помещения должно быть сгенерировано порядка 1 кВт тепла. К примеру, при обогревании основным отоплением на 90%, за счет нагреваемого пола компенсируют недостающие 10%. То есть при наших исходных данных 90% составляет 5,4 кВт и недостает 0,6 кВт, конечно, при условии, что полы прогревают на всей площади квартиры.
Такое положение вещей довольно большая редкость – чаще всего полы с подогревом устанавливают в конкретных помещениях: на кухне, в ванной. Для облегчения расчетов принято использовать усредненные значения мощностей для помещений этого типа:
- для кухонного и жилого помещения – 110-150 ватт на кв. м;
- для душевой, ванной – 140-150 ватт на кв. м
Еще одним определяющим фактором считается комфортность температуры. Как правило, более усиленный нагрев обеспечивают двужильные модели. Необходимый тепловой микроклимат будет регулироваться в зависимости от времени, необходимого на нагрев пола. Если особых требований к температурному режиму нет, можно использовать одножильную модель.
Как рассчитать электрический теплый пол
Методика расчета аналогична тому, что написано про водяной пол. Необходимо знать теплопотери и способ использования подогрева пола, мощность одного метра греющего элемента. В данном случае все несколько проще, потому что электрические материалы для нагрева пола имеют конкретную цифру, которой производители обозначают максимальную теплоотдачу. Больше заявленной цифры они выдать не в состоянии. Потому расчет теплого пола с электрическим подогревом более прост и понятен. Тем не менее, остается достаточное количество переменных величин. Это толщина стяжки, ее теплопроводность, теплопроводность финишного напольного покрытия. Их тоже надо учитывать.
Расчет зависит от мощности обогревателя на квадратный метр
Эффективная площадь обогрева
Расчет теплого пола с электроподогревом начинают с определения эффективной зоны обогрева и ее площади. Большая часть нагревательных элементов не переносит перегрева (резистивные кабели, маты из резистивных кабелей, пленочные нагреватели и инфракрасные маты). Исключение — саморегулирующиеся греющие кабели, но они стоят дорого, поэтому их применяют редко. Хотя, есть и сами кабели и маты из них.
Еще раз: электрические греющие элементы пола укладывают только на той площади, где не будет стоять мебель и/или сантехника, лежать ковры и т.д. То есть, электрический теплый пол кладут там, где будет постоянный и определенный расход тепла.
Чтобы рассчитать кабель для теплого пола надо сначала определиться с площадью, на которой он будет укладываться
Перед началом расчета предполагаемые места под мебель/сантехнику/ковры очерчиваем, считаем оставшуюся площадь. Это и будет эффективная площадь обогрева. Ее дальше используем в расчетах.
Как рассчитать метраж греющего кабеля для пола
Методика расчета основывается на том количестве тепла, которое надо восполнить (теплопотери) и эффективной площади отопления. Теплопотери делим на эффективную площадь обогрева. Получаем требуемую тепловую мощность, которую мы должны получить с квадратного метра площади с уложенным нагревательным элементом.
Например, площадь комнаты 16 квадратов, на 4 квадратах будет располагаться мебель. Обогреваемая зона — 16 кв. м — 4 кв. м = 12 кв. м. Теплопотери помещения — 1100 Вт. Узнаем сколько надо мощности с одного метра: 1100 Вт / 12 м² = 92 Вт/м².
Расчет греющего кабеля по площади помещения и мощности метра
Далее смотрим мощность кабелей для обогрева пола. Например, мощность одного метра — 30 Вт. Чтобы получить 92 Вт на квадратном метре, надо уложить чуть больше чем три метра кабеля. Вполне реальная задача. При разработке схемы, помните, что лучше, чтобы для стяжки высотой 3-4 см расстояние между проводами не превышало 25 см. Иначе пол будет иметь ярко выраженные «полосы» — чередующиеся зоны тепла и холода.
Есть и другой способ. Купить готовый набор кабеля определенной мощности. Ищите подходящую мощность и площадь укладки. Имеете все в комплекте.
Расчет теплого пола с кабельными матами
Суть расчета не изменяется. Также нужны теплопотери и эффективная площадь укладки. Это тот же кабель, но предварительно закрепленный на полимерной сетке. Такой обогревательный элемент проще в укладке. Применяется чаще всего под плитку. Просто раскатывается на подготовленное основание, сверху кладется плитка на специальный клей.
Греющие маты продаются обычно в готовом к укладке виде
С полом такого типа все просто. Он продается кусками определенной мощности на определенную площадь. Всего-то и надо, что найти тот вариант, который вам подходит.
Рассчитаем пленочный теплый пол
Пленочный нагревательный элемент продают комплектами и на метры. Подбираете метраж и мощность так, чтобы он давал требуемое количество тепла. Полотнища пленки должны укладываться вплотную друг к другу. Это необходимо, чтобы избежать «полосатости» температур.
Теплый пол пленочный. Расчет очень прост: подбираем мощность и ширину так, чтобы давали они требуемое количество тепла
Ширина пленочного теплого пола — 30 см, 50 см, 80 см и 100 см. Вполне можно в одном помещении использовать разные по ширине
Важно чтобы нагревательные элементы не перегревались
Удачные примеры и варианты
Пол, поддерживающий комфортную для ног температуру, является воплощением современного представления о домашнем уюте. Сегодня совершенно не обязательно, чтобы пол выступал в роли серого фона.
Поклонники классического консервативного стиля также могут найти себе варианты по душе. Где бы вы ни установили систему теплого электрического пола: в кухне, ванной или детской, эта комната станет вашим любимым местом в доме.
О том, как правильно выбрать длину нагревательного кабеля, вы можете узнать в следующем видео.
плотность песка г см3
2 этап – проверка существующей электропроводки
Устройство теплого пола электрического отличается
значительным потреблением электроэнергии. Это вызывает необходимость проверки,
справится ли существующая проводка с той нагрузкой, которая на нее придётся.
В процессе расчётов принимается во внимание сечение кабеля
по току. Примечание: электрический теплый пол запрещается напрямую
подключать к розетке.
Примечание: электрический теплый пол запрещается напрямую
подключать к розетке.
Если расчет показывает, что старая проводка не справится с
новой нагрузкой (диаметр жил не соответствует нагрузке), следует либо провести
замену, либо установить дополнительную проводку (напрямую от щитка),
предназначенную исключительно для обслуживания теплого поля.
Потребляемая мощность электрического теплого пола на 1 м2
приведена в таблице:
Назначение комнаты | Оптимальная мощность, Вт/м.кв. |
Кухня | 100-130 |
Спальня | |
Гостиная | |
Прихожая | |
Коридор | 90-110 |
Ванная | 120-150 |
Балкон | До 180 |
Материал подготовлен для сайта www.moydomik.net
Примечание: Установка предохранителей-автоматов –
обязательный этап устройства электроснабжения системы обогрева пола.
Пример проекта с указанием места расположения мебели, ключевых компонентов системы и основных расстояний.
Проект электрического теплого пола
Что нужно знать про нагревательный элемент кабельного теплого пола
Электрический кабель — это базовый греющий элемент кабельной системы, предназначенной для напольного отопления. В момент приобретения оборудования в первую очередь следует выяснить, какова его мощность на единицу длины. Различные производители и торговые марки предлагают своим клиентам электрокабели с уровнем удельного выделения тепла в диапазоне от 17 Вт/м до 21 Вт/м. Даже минимальное превышение этих показателей считается не только крайне нежелательным, но и небезопасным. В кабельной напольной отопительной системе обычно используют кабель двух видов: саморегулирующийся либо резистивный.
Особенности саморегулирющегося кабеля
Саморегулирующийся кабель сконструирован таким образом, что уровень выделяемого им полезного тепла меняется вместе с температурой в помещении, в котором размещено греющее оборудование. Такие теплые полы можно монтировать непосредственно под напольное покрытие, так как местный перегрев им абсолютно не страшен.
Специфика и устройство резистивного кабеля
Резистивный греющий кабель используют в основной массе электрических теплых полов. Он подходит под разные типы напольного покрытия и классифицируется по следующим параметрам:
1. Конфигурация:
- одножильные имеют 1 металлическую греющую жилу (изготовляется из латуни, оцинкованной стали, нихрома или другого высокопрочного материала) и 2 вывода для монтажа, расположенные с обоих концов кабеля. Снабжаются внутренней изоляцией и специальным экраном, предохраняющим конструкцию от всевозможных механических повреждений и снижающим уровень электромагнитного излучения;
- двужильные состоят из 2 жил (греющая+возвратная либо греющая+греющая), одного монтажного вывода и удобной концевой муфты. Сверху покрываются оплеткой из металла и активным защитным экраном. Схема их укладки значительно проще, нежели у одножильных, но стоимость несколько выше.
2. Толщина:
- тонкие — от 2 до 3 мм — не нуждаются в стяжечной укладке и легко монтируются даже в слой самого обычного плиточного клея;
- толстые — от 4 до 5 мм — для корректной работы обязательно заливаются бетонно-цементным раствором (стяжкой).
3. Общая линейная мощность из расчета на погонный метр:
- кабель активного нагрева — 18–22 Вт/п.м. — имеет высокий показатель КПД и требует интенсивной теплоотдачи. Над ним непременно размещают прослойку из прочного теплоемкого материала высотой не менее 3 сантиметров. При таком варианте монтажа происходит необходимый отбор выработанного кабелем тепла, и система не перегревается даже при постоянной эксплуатации;
- кабель умеренного нагрева — 8–12 Вт/п.м. — прогревается медленно и плавно. Подходит для «сухого» монтажа, для установки без использования цементно-бетонной стяжки и для укладки под напольные покрытия с низкой теплопроводимостью (ламинат, ковролин, линолеум, паркет и пр.).
Оба вида электрического кабеля работают стабильно, долго и надежно. Если система смонтирована и эксплуатируется в строгом соответствии с правилами и нормами, заявленными производителем, срок службы греющего кабеля составляет не менее 50 лет.
Греющий кабель для системы напольного отопления продается на бабине, в виде отдельных секций или специальных матов (рулонов). Маты состоят из теплопроводника, который уложен змейкой и укреплен на основе из стекловолоконной сетки. Такой материал можно легко разрезать на фрагменты, разумеется, не нарушая целостность электрокабеля, и покрыть им плоскости любого размера и формы.