Как рассчитать потери тепла?
Важную роль играет расчет мощности, который потребуется помещению, чтобы в нем была комфортная температура. На самом деле, расчет теплопотерь считается одним из самых сложных, так на него может влиять множество параметров:
- учитывается время года, климат;
- понижение или повышение градусов за окном;
- назначение помещения;
- размер проема окон и дверей;
- тип напольного покрытия;
- степень теплоизоляции;
- наличие других источников тепла, которые также могут сыграть свою роль.
Как правило, специалисты берут средние значения для расчетов. Если здание, хорошо утепленное при помощи качественных стеклопакетов, то показатели равны 40 Вт/м2. В некоторых домах, где теплоизоляция находиться на среднем уровне, теплопотери могут оставлять 70-80 Вт/м2, для старых построек такой показатель увеличивается в несколько раз и может достигать 100 Вт/м2.
Расчет теплоотдачи теплого пола
При этом шаг должен быть таким, чтобы суммарная длина труб в контуре не превысила 100 м.
Иначе гидравлическое сопротивление окажется чрезмерно большим.
Затем определяют мощность теплоотдачи по формуле:
Q = S х Δt х B х Fp х Fi х Fm х Fd,
Где:
S, кв. м – площадь помещения;
Δt, град. – разность температур подачи и обратки;
B, Fp, Fi, Fm, Fd — коэффициенты, зависящие от:
- вида напольного покрытия;
- материала труб;
- прочих элементов системы.
Теплоотдача теплого пола и традиционной отопительной системы
Их значения приводятся в таблицах справочной литературы.
Мощность теплоотдачи отопления должна быть больше мощности теплопотерь помещения, но не более, чем на 25%.
Если полученное значение оказалось недостаточным либо, наоборот, слишком большим, задаются новым диаметром трубы (чем больше его значение, тем больше мощность) и шагом между нитками (тут наоборот: чем больше шаг, тем меньше мощность).
После этого делают перерасчет.
Схема теплого электрического пола
Системы теплого пола электрического значительно проще водяных. Функцию управления берет на себя регулятор. На нем выставляется нужная температура, и по сигналам термодатчика происходит подача и отключение напряжения к нагревательным элементам.
Схема системы теплого электрического пола
Монтаж в слой стяжки
В стяжку могут монтироваться кабели, кабельные маты и стержневой инфракрасный теплый пол. Перед укладкой и после следует проверить сопротивление греющих элементов и сравнить его с паспортным. Допустимой величиной считается различие в 10 %. Укладка производится преимущественно змейкой (рис. ниже).
Укладка одножильного и двухжильного кабелей теплого пола: 1 – греющий кабель; 2 – силовой кабель; 3 – соединительная муфта; 4 – провод термодатчика; 5 – термодатчик
У саморегулирующегося кабеля не нужно замыкать проводники между собой на конце, поскольку ток течет в поперечном направлении через полупроводниковую матрицу, расположенную между ними.
Подготовка для разных систем теплых полов одинаковая:
- Сначала стены помещения оклеиваются внизу по периметру демпферной лентой.
- Затем укладывается гидроизолирующая пленка, а на нее – теплоизоляция. Если снизу расположено отапливаемое помещение, достаточно толщины 3-4 мм. На первом этаже толщина плит утеплителя берется до 50 мм.
- Стыки закрываются монтажным скотчем.
- Кабель фиксируется специальными зажимами.
- Шаг витков составляет 8-15 см и выбирается согласно расчетам.
- От стен делается отступ около 10 см, а от труб – до 15 см.
- Соединение с силовым кабелем производится с помощью муфты и размещается в зоне стяжки.
- Температурный датчик следует положить в гофре между витками кабеля.
- Кабель заливается слоем стяжки.
- При этом контролируется отсутствие пустот, иначе может произойти локальный перегрев нагревателя. Для повышения пластичности в цемент добавляют 1 кг клея ПВА на мешок.
- Для отделки под плитку делается дополнительная финишная заливка выравнивающей стяжки.
Монтаж в слой плиточного клея
Можно размещать теплый пол под устройство кафельной кладки в слое плиточного клея. Меньше всего проблем существует с тем, как уложить теплый пол из кабельного мата. Он представляет собой резистивный одножильный кабель, прикрепленный к полотну армирующей сетки змейкой. Небольшая толщина нагревательного мата позволяет монтировать его в слой плиточного клея. В результате слой «пирога» составляет 30 мм.
Теплый пол под плитку
Подготовка основания производится так же, как перед монтажом кабельного теплого пола. Здесь часто применяют заливку выравнивающей стяжки, поскольку под плитку требуется ровная поверхность.
Поверхность основания размечают с учетом отступов. Маты раскатывают по основанию от места расположения терморегулятора. На поворотах армирующую сетку разрезают, а провод поворачивают в нужном направлении.
После укладки и подключений к терморегулятору измеряется сопротивление кабеля и сравнивается с паспортным. Затем подается питание и в течение 1 мин проверяется работоспособность системы.
Клей укладывается тщательно и небольшими порциями, чтобы не было полостей. Слой должен полностью накрывать нагревательный мат. Сверху кладется керамическая плитка, которую слегка вдавливают в раствор. Толщина слоя составляет 8-10 мм.
После полного высыхания клея можно включать напольный обогрев.
Монтаж инфракрасного пленочного теплого пола
Перед монтажом составляется план расположения полос термопленки, соединений и датчиков. Теплоизоляция укладывается на всю площадь помещения, а термопленка – только в места подогрева.
Под терморегулятор и датчик заранее находятся и отмечаются места их расположения. Если прибор встроенного типа, под него и под кабели следует проштробить места их размещения.
Термопленка укладывается на чистое и ровное основание сверху слоя теплоизоляции. При необходимости ее разрезают по специальным линиям или посередине между поперечными полосами нагревателя. К основанию и между собой пленка крепится термоскотчем. Нахлест полосок друг на друга не допускается.
Схема укладки и подключения инфракрасного пленочного пола
Соединения производятся с помощью клемм. Силовые провода утапливаются в канавках, вырезанных в слое утеплителя. Датчик соединяется с термопленкой скотчем и размещается в углублении.
Уложенный теплый пол закрывается сверху полиэтиленовой пленкой и фанерой, а затем делается финишное покрытие: линолеум, ламинат, ковролин.
Как выбрать котел?
Котел выбирается по мощности. Если вы считали полы в программе, то получили значения мощности для каждой комнаты. Сложите их, и получите мощность вашего будущего котла.
Обычно минимальная мощность современных котлов 24 киловатта. Этого достаточно для отапливания дома площадью до 120 м2 (при стандартной высоте потолков до 3 метров). В большинстве котлов есть встроенный насос, поэтому приобретать его отдельно не нужно. На входе и выходе котла рекомендуется устанавливать пластиковые запорные клапаны.
Если вдруг вам придется снимать котел на обслуживание или ремонт, то вам не придется сливать всю воду из системы — вы просто закроете клапаны.
Как правильно рассчитывать водяные теплые полы
Так как данная система отличается сложностью установки, соответственно и расчет водных теплых полов будет отличаться от электрического.
Данный процесс состоит из:
- Расчета количества используемых материалов.
- Расчета общего числа специальных труб, которые необходимы для обеспечения обогрева помещения. Перед этим расчетом, вам нужно определить общее число теплопотерь, с этим хорошо справляются разнообразные онлайн-калькуляторы.
- Установка системы водного теплого пола должна производится с учетом тех показателей теплопотери, которые вы получили.
- Расчета расстояния между водопроводами (обычно пятнадцать сантиметров, но все зависит от размеров сечения труб).
Расчет и монтаж теплого пола
Перед тем, как приступить к монтажу пола, необходимо рассчитать необходимое количество труб и других материалов. Первым делом нужно разделить комнату на несколько одинаковых квадратов. Количество частей в комнате зависит от площади комнаты и её геометрии.
Расчет необходимого количества трубы
Максимальная длина контура необходимая для теплого водяного пола не должна превышать 120 метров. Стоит заметить, что такие размеры указываются, по нескольким причинам.
Из-за того, что вода в трубах может влиять на целостность стяжки, при ее неправильной установке можно испортить пол. Увеличение или снижение температуры негативно влияет на качества деревянного пола или линолеума. Выбирая оптимальные размеры квадратов – вы более эффективно распределяете энергию и воду по трубам.
Способы укладки трубы для теплого пола
Существует 4 способа укладки трубы:
- Змейка;
- Двойная змейка (укладывается в 2 трубы);
- Улитка. Труба укладывается в 2 раза (изгиба) выходя из одного источника постепенно закругляясь к середине;
- Угловая змейка. Две трубы выходят с одного угла: первая труба начинает змейку, вторая – заканчивает.
В зависимости от того, какой способ укладки трубы вы выберите – необходимо рассчитать количество труб. Стоит заметить, что укладывать трубы можно несколькими способами.
Какой способ укладки стоит выбрать?
В больших помещениях, которые имеют ровную квадратную или прямоугольную форму рекомендуется использовать способ укладки «улитка», таким образом, большое помещение всегда будет теплым и уютным.
Если помещение длинное или маленькое, то рекомендуется использовать «змейку».
Шаг укладки
Для того, чтобы ступни человека не ощущали разницу между участками пола, необходимо придерживаться определенной длины между трубами, у края эта длина должна быть примерно 10 см, далее – с разницей в 5 см., например, 15 см., 20 см, 25 см.
Расстояние между трубами не должно превышать 30 см., иначе ходить по такому полу будет просто неприятно.
Расчет разных типов радиаторов
Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1л/мин примерно равен мощности в 1кВт (1000Вт).
Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя
Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.
Осевое расстояние определяют между центрами отверстий для теплоносителя
Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов от расчета алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.
Чтобы считать было проще, есть усредненные данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50см приняты такие значения мощностей:
- алюминиевые — 190Вт
- биметаллические — 185Вт
- чугунные — 145Вт.
Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.
При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м 2 площади. Тогда на помещение 16м 2 нужно: 16м 2 /1,8м 2 =8,88шт. Округляем — нужны 9 секций.
Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:
- биметаллический радиатор — 1,8м 2
- алюминиевый — 1,9-2,0м 2
- чугунный — 1,4-1,5м 2 .
Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.
Расчет чугунных радиаторов отопления. Считать может по площади или объему помещения
Для наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м 2. Считаем количество секций стандартного размера: 16м 2 /2м 2 =8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.
Расчеты
Итак, переходим к основному вопросу нашей статьи: как рассчитать теплый пол?
- В первую очередь необходимо рассчитать длину трубы, которая будет использована в системе отопления. Для этого есть специальная простая формула, где отапливаемая площадь помещения делится на шаг, который умножается на константу – 1,1. Что это за показатель 1,1? По сути, это расходы трубы на повороты контура.
- Второй – определяем мощность теплого пола. Так как все расчеты проводятся относительно полезной площади обогрева, то перед тем как приступить к этим расчетам, необходимо обозначить эту полезную площадь. По сути, это пол, на котором не будет стоять мебель и другие элементы декора. С электрическими теплыми полами такая площадь определяется как 70% пропорция к общей площади помещения.
А вот теперь возвращаемся к нашему первому определению, в качестве какого источника тепла теплый пол будет использован вами (в качестве основного или вспомогательного)? Если он будет являться основной системой отопления, то для расчета используется удельная мощность, равная 150-180 Вт/м². Если как вспомогательная система, тогда 110-140 Вт/м².
Тип укладки контура
Но и это еще не все. Большое значение имеет и тип помещения, где устанавливается теплый пол. Внизу расположена таблица, где нами показаны помещения и рекомендуемые в них теплые полы относительно используемой мощности.
Помещение | Мощность теплого пола, Вт/м² |
Жилые комнаты | 110-150 |
Ванная | 140-150 |
Балкон или лоджия (присоединенные) | 140-180 |
Зависимость получается прямая: чем ниже теплоизоляционные качества помещения, тем большей мощности в нем должны укладываться теплые полы. Необходимо добавить сюда и наличие дополнительного источника тепла. К примеру, на кухне можно устанавливать теплые полы из расчета 110-120 Вт/м². Правда, надо заметить, что все показатели мощности, приведенные в таблицы, даны с определенным запасом в размере до 25%. И еще не стоит забывать об этажности расположения квартир, если дело касается электрических теплых полов в городских квартирах. Если это первый этаж, то стоит добавить ко всем цифровым показателям процентов пятнадцать. Особенно, если в многоквартирном доме нет отапливаемого подвала.
Схема расположения контуров
Пример расчета
Давайте рассмотрим небольшой пример, как можно правильно рассчитать мощность водяного теплого пола, уложенного на кухне площадью 15 м². Будем считать, что кухня находится в частном доме, чтобы не противоречить утверждению специалистов – водяные теплые полы в городских квартирах, где используются централизованные сети отопления, не устанавливаются.
Итак, в первую очередь определяется полезная площадь. Из общей площади вычитаются размеры холодильника, варочной плиты, раковины и различной мебели. Пусть приблизительно это будет 5 м².
Общие тепловые потери по-любому будут рассчитываться с учетом общей площади пола, то есть 15 кв.м. Если брать стандартную теплоотдачу любой системы отопления, а это 100 Вт на 1 м², то можно получить, что теплопотери нашей кухни составляют 1500 Вт. Вот такую мощность должен вырабатывать теплый пол. Добавляем сюда коэффициент запаса, который варьируется в пределах 1,2-1.3. Возьмем минимальный, поэтому теплопотери составляют 1800 Вт.
Теплый пол на кухне
Теперь высчитываем длину контура. Эта формула нам известна, о ней было написано выше. Для нее необходима полезная площадь – 10 м², шаг укладки – выбираем, к примеру, 20 см, и дополнительный коэффициент 1,1. В конечном итоге получаем – 45 м.
Теперь, чтобы определить максимальную мощность самого теплого пола, надо общие теплопотери помещения разделить на полезную площадь: 1800:10=180 Вт/м². Если уменьшить шаг укладки, то можно снизить удельную мощность контура. При увеличении полезной площади также увеличивается и мощность. Варьируя различными размерными показателями, можно изменять чисто технические характеристики системы отопления. А от этого будет зависеть и стоимость самой конструкции.
Расчет мощности водяного пола
Расчеты отопительной водяной системы нужно произвести предельно тщательным образом. Любые ошибки в дальнейшем могут привести к дополнительным затратам, так как исправить их можно будет только при полном или частичном демонтаже стяжки, а это может повредить внутреннюю отделку помещения.
Перед тем как приступить к расчетам количества мощности нужно знать несколько параметров.
Параметры для водяного пола
На мощность отопительной системы влияют несколько факторов, такие как:
- диаметр трубопроводов;
- мощность насоса;
- площадь помещения;
- вид напольного покрытия.
Эти параметры так же помогают произвести расчет длины труб для теплого пола и их ветки, для обогрева помещений.
Но как производится расчет мощности?
Методика расчетов мощности
Самостоятельно произвести расчеты мощности очень сложно, так как здесь понадобится навык и опыт. По этим причинам его лучше заказать у соответствующей организации, где работают инженеры – технологи. Если все же расчет производится самостоятельно, то за среднюю величину берут 100 Ватт на один квадратный метр. Такая методика применяется в многоэтажных зданиях.
В частных же домах, средняя величина мощности будет зависеть от площади здания. Таким образом, специалистами составлены следующие показатели:
- площадь до 150 кв. м. – 120 Вт/м2;
- площадь от 150 до 300 кв. м. – 100 Вт/м2;
- площадь от 300 до 500 кв. м. – 90 Вт/м2.
Рассмотрев методику расчета мощности, нужно высчитать количество труб. Но для этого вначале стоит ознакомиться со способами их установки.
Сокращаем затраты
Благодаря применению терморегулятора вы сможете сэкономить до 40 % электроэнергии
Удобство и комфорт, создаваемые отапливаемыми полами, омрачает только один фактор – счет за электроэнергию. Как, не лишая себя удобств, снизить расходы на электроэнергию? Несколько советов по умному потреблению:
- Обязательно смонтируйте терморегулятор. Расположить его лучше на максимальном удалении от основной отопительной системы. Регуляторы позволяют сэкономить до 40% электроэнергии за счет необходимого включения.
- Максимально снизьте потерю тепла. При необходимости проведите работы по теплоизоляции стен. Согласно опытных статистических исследований, улучшение теплоизоляции снижает расходы на электроэнергию почти в 2 раза.
- Установите многотарифную систему оплаты электроэнергии. При этом отопление полами в ночное время обойдется в зависимости от региона в 1,5 – 2 раза дешевле.
- Начните экономить ещё на этапе монтажа. Не заводите элементы отопления в места расположения мебели, делайте необходимые отступы от стен и приборов отопления.
- И простая математика: понизив температуру всего на 1 0 С, потребление электроэнергии сокращается на 5%.
Подойдите к вопросу укладки теплых полов ответственно. Заранее просчитайте необходимую мощность приборов. Эти данные помогут правильно подобрать элементы нагрева и пользоваться системой без значительного ущерба для семейного бюджета.
В последнее время данный вид обогрева помещения становится очень популярным. Расчет мощности нагревательного кабеля производят для того, чтобы система обогрева теплый пол в процессе работы соответствовала всем требованиям комфортности. То есть, теплый пол должен обогревать помещение в нужной степени без чрезмерных затрат электроэнергии.
Для обогрева помещений теплый пол может использоваться как основной или дополнительный источник тепла. Кабельная система обогрева, которая будет использоваться для помещения как основной источник тепла должна иметь мощность 160-180 Вт / кв.м. В помещениях, где теплый пол является дополнительным источником тепла, вполне хватит мощности нагревательного кабеля в 100-150 Вт / кв.м.
Чтобы рассчитать необходимую удельную мощность кабеля нужно узнать полезную площадь помещения. Полезная площадь — это та, на которой непосредственно будет прокладываться кабель без учета площади занимаемой стационарной мебелью (шкаф, диван, тумбы).
Например, если у вас площадью комнаты 16 кв.м с расположенными в ней диваном 2.5 кв.м и шкафом 1 кв.м, то полезная площадь будет составлять 12.5 кв.м.
Исходя из выше сказанного следует что, мощность нагревательного кабеля
для помещений, где теплый пол как:
— основной источник тепла:
P = 12.5 (кв.м) * 160 (Вт/кв.м) = 2 кВт;
— дополнительный:
P = 12.5 (кв.м) * 100 (Вт/кв.м) = 1.25 кВт.
Любой нагревательный кабель имеет свою погонную мощность
— это мощность одного метра кабеля (например, 20 Вт/м). Некоторые покупатели, сопоставив удельную и погонную мощность, придя в магазин, просят продать им «столько-то» метров кабеля. Однако при покупке кабеля опираясь на погонную мощность, не следует!
В ряду того, что холодные и горячие концы соединяются специальными муфтам, нагревательные кабели продаются фиксированными отрезками (разной мощности). Эти отрезки нельзя увеличивать или уменьшать, поскольку установка неквалифицированным персоналом концевых и соединительных муфт может стать причиной преждевременного выхода кабеля из строя. Также при разрезании кабеля с него снимается гарантия.
Поэтому основной показатель, на который регламентируются при покупке кабеля, является не его метраж, а мощность. К примеру, если у вас расчетная мощность составляет 2 кВт, то ближайшая ей соответствующая 2.08 кВт, длиной 140 м.
Таблица расчета мощности нагревательного кабеля
Мощность, кВт | Длина кабеля, м | Сопротивление при 20 °C, Ом ±10 % | «Полезная» площадь помещения, м² | |||
доп. источник тепла | основной источник тепла | |||||
100 Вт/м² | 150 Вт/м² | 160 Вт/м² | 180 Вт/м² | |||
0.16 | 11 | 300 | 1.6 | 1.1 | 1.0 | 0.9 |
0.25 | 17 | 190 | 2.5 | 1.7 | 1.5 | 1.4 |
0.44 | 29 | 109 | 4.4 | 2.9 | 2.5 | 2.4 |
0.67 | 45 | 64.4 | 6.7 | 4.5 | 4.1 | 3.7 |
0.82 | 55 | 52.6 | 8.2 | 5.5 | 4.9 | 4.6 |
1.05 | 71 | 40.8 | 10.5 | 7.0 | 6.3 | 5.8 |
1.25 | 83 | 34.3 | 12.5 | 8.3 | 7.5 | 6.9 |
1.40 | 95 | 30.4 | 14.0 | 9.3 | 8.6 | 7.8 |
1.75 | 117 | 22.1 | 17.5 | 11.7 | 10.9 | 9.7 |
2.08 | 140 | 18.0 | 20.8 | 13.9 | 12.8 | 11.6 |
На сегодняшний день существует достаточно широкий спектр выбора кабельных систем обогрева, поэтому проблем с выбором типа и мощности кабеля возникнуть не должно. Тем более, что в большинстве магазинов мощность кабеля рассчитывают продавцы в качестве бесплатной услуги.
Общие сведения по результатам расчетов
- Общий тепловой поток
– Кол-во выделяемого тепла в помещение. Если тепловой поток меньше тепловых потерь помещения, необходимы дополнительные источники тепла, например, такие как настенные радиаторы. - Тепловой поток по направлению вверх
– Кол-во выделяемого тепла в помещение с 1 квадратного метра площади по направлению вверх. - Тепловой поток по направлению вниз
– Кол-во “теряемого” тепла и не участвующего в обогреве помещения. Для уменьшения данного параметра необходимо выбирать максимально эффективную теплоизоляцию под трубами ТП* (*теплого пола). - Суммарный удельный тепловой поток
– Общее кол-во тепла, выделяемого системой ТП с 1 квадратного метра. - Суммарный тепловой поток на погонный метр
– Общее кол-во тепла, выделяемого системой ТП с 1 погонного метра трубы. - Средняя температура теплоносителя
– Средняя величина между расчетной температурой теплоносителя подающего трубопровода и расчетной температурой теплоносителя обратного трубопровода. - Максимальная температура пола
– Максимальная температура поверхности пола по оси нагревательного элемента. - Минимальная температура пола
– Минимальная температура поверхности пола по оси между трубами ТП. - Средняя температура пола
– Слишком высокое значение данного параметра может быть дискомфортно для человека (нормируется СП 60.13330.2012). Для уменьшения данного параметра необходимо увеличить шаг труб, снизить температуру теплоносителя либо увеличить толщину слоев над трубами. - Длина трубы
– Общая длина трубы ТП с учетом длины подводящей магистрали. При высоком значении данного параметра калькулятор рассчитает оптимальное кол-во петель и их длину. - Тепловая нагрузка на трубу
– Суммарное количество тепловой энергии, получаемое от источников тепловой энергии, равное сумме теплопотреблений приемников тепловой энергии и потерь в тепловых сетях в единицу времени. - Расход теплоносителя
– Массовое кол-во теплоносителя предназначенного для подачи необходимого кол-ва тепла в помещение в единицу времени. - Скорость движения теплоносителя
– Чем выше скорость движения теплоносителя, тем выше гидравлическое сопротивление трубопровода, а также уровень шума, создаваемого теплоносителем. Рекомендуемое значение от 0.15 до 1м/с. Данный параметр можно уменьшить за счет увеличения внутреннего диаметра трубы. - Линейные потери давления
– Снижение напора по длине трубопровода, вызванного вязкостью жидкости и шероховатостью внутренних стенок трубы. Без учета местных потерь давления. Значение не должно превышать 20000Па. Можно уменьшить за счет увеличения внутреннего диаметра трубы. - Общий объем теплоносителя
– Общее кол-во жидкости для заполнения внутреннего объема труб системы ТП.
Калькулятор работает в тестовом режиме. Дата добавления калькулятора 11.03.2018
Как правильно рассчитать теплый водяной пол в доме
- Климатические характеристики места, где стоит ваш дом (по соответствующим таблицам).
- План помещения (можно эскиз).
- Перечень и толщина материалов, используемых в ограждающих конструкциях (стены, перекрытие и т.п.).
- Тип остекления в помещении, где будут проводиться работы, так как это основной источник теплопотерь.
- Какую температуру в помещении вы планируете обеспечить.
- Тип напольного покрытия.
- Теплоизоляция полов (материал и толщина), а также бетонной стяжки.
- Стационарно расположенная мебель (газовая плита, шкаф-купе и т.п.).
В зависимости от назначения вашего помещения необходимо ориентироваться на максимально допустимую температуру, определённую СНиП:
- Рабочие комнаты – 21 – 27 град;
- Жилые – 29 град;
- Коридор – 30 град;
- Ванная комната – 33 град.
Требования к температуре теплоносителя
Температура поступающего в тёплые полы теплоносителя 40 – 55 град. (max 60). Перепад между подачей и обраткой не должен выходить за диапазон 5 – 15 градусов.
Объясняется это тем, что при значении менее 5 град. расход теплоносителя значительно увеличивается, приводя к существенным потерям напора. А при значениях выше 15 град. получаем чувствительный перепад температур на поверхности полов.
Выбор отопительных труб и расчет их длины
Расчёт труб для водяного пола в одной петле (контуре) проводится с учётом их выбранного диаметра и составляет при диаметрах:
- 16 мм – до 90 м;
- 17 мм – до 100 м;
- 20 мм – до 120 м.
Разброс по длине определяется разными показателями тепловой нагрузки и гидравлического сопротивления. Расчёт монтажа водяных тёплых полов показывает, что в небольших помещениях обогрев выполняется одним уложенным контуром. В больших – двумя и более (чтобы не превысить максимально разрешённую длин труб).
В последнем случае необходимо стремиться к тому, чтобы длина всех укладываемых контуров была примерно одинаковой. (Под длиной понимается вся труба, считая от коллектора), с максимальным разбросом до 10 м.
Задаваемый шаг раскладки
Расчёт тёплого водяного пола своими руками предусматривает выбор величины шага, который определяется тепловой нагрузкой, длиной контура и ещё целым рядом параметров.
- Если речь идёт о краевых зонах, то шаг принимается равным 10 – 15 см. При этом стандартом определено, что к указанной зоне относится до 6 рядов;
- Санузел (все варианты) – шаг 150 мм;
- Зоны, относящиеся к центральным – 20 – 30 см.
Подбор диаметра
Расчёт трубы для тёплого водяного пола начинается с выбора диаметра. Оптимальным диаметром для помещений жилых, площадь которых составляет более 50 кв. м является 16 мм. В частном доме это обеспечивает наиболее приемлемое соотношение трёх базовых показателей: цена / простота монтажа / объём потребного теплоносителя.
Достаточно часто применяют 18 мм трубы. Но существенной разницы в качестве работы обустроенной системы это не даёт, а расходы на приобретение материалов возрастают многократно.
Расчёт тёплого водяного пола свидетельствует о том, что трубы в 20 мм принимают гораздо больше теплоносителя, что автоматически требует использования более мощного источника его прогрева. А согнуть такую трубу с шагом даже в 150 мм практически невозможно. Увеличение шага снижает количество тепла на единицу площади.